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ABSTRACT: The adsorption of dendrimers onto charged surfaces
plays a role in many emerging applications. Numerous studies found
in the literature report that dendrimers flatten at these interfaces.
Here, we provide a simple scaling theory that describes the height of
the adsorbed layer, the fraction of segments within the dendrimer that
touch the surface, and the total number of dendrimers adsorbed as a
function of generation of growth, surface charge density, and
concentration. We demonstrate that these predictions agree well
with extensive molecular dynamics simulations. Combined, the
simulations and scaling argument indicate that simultaneous
adsorption and compression at the interface take place.

A growing list of potential biomedical1 and nanotechno-
logical2 applications of dendrimers makes study of their

behavior at charged interfaces particularly interesting. The
behavior of linear chains near charged surfaces has been
extensively investigated over the past several decades, and much
is understood.3 However, one expects that the compact, highly
branched structure of dendrimers and attendant higher charge
densities conspire to produce phenomenology that differs from
linear analogues. In the dilute solution limit, for example, one
expects that the extent that a dendrimer may stretch out to lay
down on a surface varies with generation and does not
generally occur to the same extent as comparably sized coils of
linear chains.4 In the concentrated regime, further variations
away from the behavior of linear chains may be expected since
dendrimers do not appear to interpenetrate to any appreciable
extent. Many essential questions remain open regarding not
only the necessary conditions for dendritic molecules to adsorb
onto surfaces but also their deformation and layer structure. We
lack a complete understanding of how surface concentration
grows as a function of the attractiveness of the substrate, how
the double layer structure changes with varying surface charge
density, and the extent to which the molecule’s conformation is
perturbed due to the surface when other dendrimers are
present. These and related questions have received much
attention in both the theoretical5−9 and experimental10−20

literature. Answering these questions would impact not only the
myriad potential applications of dendrimers but also the use of
related materials such as colloids. From these studies, the
following picture emerges: (i) there is a critical combination of
environmental, molecular, and surface properties that exist in
order for adsorption to take place; (ii) upon adsorption to a
weakly attracting surface, the conformation of individual
dendrimers is little perturbed; and (iii) severe deformation
and flattening occur at higher attractive strengths.

This latter feature, though surprising, garners broad support
from the experimental literature. For example, many reflectivity
and scanning probe microscopy studies show that, on an
attractive surface, the thickness of individual dendrimers and of
dendrimer monolayers is smaller than the dendrimer’s
diameter.10,11,13,15,16 Using ellipsometry and FTIR-external
reflection spectroscopy, Tokuhisa et al.14 further suggest that
the dendrimer conformation at the surface and its resulting
monolayer thickness can be manipulated by changing the
dendrimer−surface interaction enthalpy relative to that of the
dendrimer solution. Similarly, several groups varied dendrimer
charge density to tune monolayer thicknesses.18−20

The primary difficulty in analytically capturing the
compression of the dendrimers lies in addressing the intra-
and intermolecular interactions, in addition to the impact of the
charged surface on the dendrimers. Scaling theories have been
successfully applied to describe individual dendrimers.21

However, as noted by Kröger,22 there are limitations to the
applicability of scaling to dendritic molecules and their internal
interactions.
In an effort to circumvent some of these difficulties and gain

insight into the molecular processes active upon docking with
the surface, we herein develop a simple model that is an
extension of the analysis due to de Gennes23,24 for ideal linear
chains. To carry out this analysis, we must first build an
effective ideal model for dendrimers that accounts for the
swelling of the molecule due to intramolecular interactions. We
previously proposed a recipe for constructing such a model.25

As in similar treatments of linear chains, the key element lies in
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rescaling the step length between segments to capture the
intramolecular repulsions that drive the squared radius of
gyration Rg

2 to values higher than that of the noninteracting
ideal molecule (R0

2). This must be done while preserving the
connectivity of the dendrimer. We found that the effective step
length l1 may be estimated from the solution of the cubic
equation given in reference 25 and in the Supporting
Information. The number of effective segments N1 is found
by requiring that the contour length L of the molecule remain
fixed under the rescaling operation. Thus, N1 = (N − 1)l0/l1 +
1, where l0 is the bare step length. With these two rescaled
values, the behavior of the dendrimer in the presence of an
external perturbation may be estimated with a much simpler
model and Rg

2 ≡ R0
2.

Following de Gennes, we write the Flory free energy density
as a function of the perpendicular component of the radius of
gyration Rz for a single adsorbed dendrimer in a layer
composed of Nd molecules: F/kT ∝(R0/Rz)

2 − wN1 fs. Unlike
the scenario involving linear chains, we are justified in
considering a single dendrimer in the adsorbed layer since
the high degree of branching limits the extent of inter-
penetration between different molecules. The first term on the
right-hand side captures the compression of the dendrimer
along the axis perpendicular to the plane. The second term
counts the enthalpic gain due to dendrimer segments touching
the charged surface. Given the high ionic strength (and, thus,
charge screening) in the systems of interest, the enthalpy
parameter w is treated as a simple numerical parameter
dependent on surface charge. The fraction of dendrimer
segments touching the surface fs should vary as the ratio of a
thin shell on the molecule’s surface to its volume, l1/Rz. One
also expects that fs is inversely proportional to the number of
dendrimers in the layer Nd since fewer segments from each
individual molecule would need to be recruited to neutralize
the surface charge as more molecules isolate to the interface.
The fraction should also increase with increasing w. Finally,
unlike simple linear molecules, one may expect that the fraction
of available segments within compact dendritic molecules varies
with generation. Thus, fs also depends on an inverse
compressibility or “openness function” f G that we approximate
as the square ratio of the radius of gyration to the total contour
length: f G ∝(Rg/L)

2. Thus, we expect that the fraction of
segments touching the surface fs ∝(wl1/RzNd)(Rg/L)

2.
Minimizing F/kT with respect to Rz leads to the relationship

Rz ∝ NdL/w
2 in the weakly adsorbed limit, similar in form to

the corresponding scaling law for linear chains in the plateau
region of the adsorption isotherm. Some differences are
notable, however. Unlike the ideal linear chain, the height
above the plane for dendrimers varies as the inverse square of
the enthalpy and directly depends on the number of
dendrimers in the layer. The behavior of Nd is complicated
and is likely dictated by an intricate balance between the
dendrimers’ ability to pack on the surface, the number of
charges it carries, and the solution entropy. However, one may
expect that an upper limit inversely proportional to Rg

2 will be
reached due to packing constraints at the surface. Nevertheless,
as discussed below and reported in the literature, standard
adsorption isotherms successfully encapsulate the dendrimer
solution’s behavior over a broad range of concentrations.
Similarly, one also expects that Rz reaches some limiting value
below which it can no longer be compressed in the limit of
strong adsorption.

To test these predictions, we performed molecular dynamics
simulations of an electrolyte solution consisting of monocentric
dendrimers and their attendant counterions placed between
two model electrode surfaces. Every bead within the model
dendrimers carries a unit positive charge. We examined the
behavior of four different generations of growth, G, spanning G
= 2, 3, 4, and 5. Each of the two electrode surfaces is modeled
by a grid of 225 equally spaced immobile particles. Each particle
is uniformly assigned a fixed positive or negative charge,
depending upon the electrode, that is required to achieve a
given surface charge density σ. Combined, the two electrodes
form two planes at the top and bottom edges of the simulation
box. The simulation box is periodic in the two lateral directions.
The basic length scale for the simulations is set by the

Bjerrum length of water at 25 °C, lw (roughly 7 Å). The spacing
between electrode beads was fixed at lw in a simple square
lattice. The box dimensions are set to 15lw × 15lw × 15lw. Four
different concentrations of electrolyte were examined for each
value of G studied. Noting that a typical electrolyte employs a 1
M concentration of charged species, we need roughly 680
charged groups attached to the dendrimers within the
simulation box to match a typical concentration c*. We
considered concentrations of approximately 0.5c*, c*, 1.5c*,
and 2c*. However, since the charges come in discrete quantities
dependent upon G, the value of c* varied slightly as a function
of the generation of growth. Specifically, c* corresponds to 68,
30, 14, and 8 dendrimers for generations 2, 3, 4, and 5,
respectively. Eleven different surface charge densities were
examined with σlw

2 = 0.0−1.0. We estimate w by a simple series
expansion about σ: w ∝1/kT(|σlw2 | + a2|σ

2lw
4 |) where kT is the

thermal energy. The unknown coefficient a2 remains as a fitting
parameter and is given a value of 0.25. Values for l1 are
estimated from simulations of electrolyte solutions between
noncharged electrodes. All simulations were carried out with
the LAMMPS26,27 simulation code. Additional details on the
simulation are given in the Supporting Information.
Figure 1 illustrates the model with typical snapshots from the

simulations. The figure presents images taken from a 2c*
simulation of G = 5 dendrimers sandwiched between the
electrodes. The reduced surface charge density σlw

2 is 0.1 on the
left and 1.0 on the right. The red beads belong to the
dendrimer; the white beads are the counterions; and the gold
beads compose the electrodes.

Figure 1. Snapshots from simulations of G = 5, c = 2c* configurations
with σlw

2 = 0.1 on the left and σlw
2 = 1.0 on the right. The red beads

represent the dendrimer; the white beads are the counterions; and the
gold beads compose the electrodes.
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As suggested by Figure 1, the mass distribution between the
electrode plates depends upon the charge density, as well as
other factors such as concentration and generation of growth.
To probe the impact of these variables, we calculate the
probability P(z) of finding dendrimer or counterion segments
at locations perpendicular to the electrode surfaces. Specifically,
P(z) = n(z)/nT where n(z) is the number of particles found to
fall over the course of the simulation between z ± dz, with a bin
width of dz = 0.3lw, and nT is the sum over the value of n(z) for
all bins. Figure 2 presents P(z) for the dendrimer segments for
G = 3 over a range of σlw

2 and c values. The concentrations
increase moving from (A) to (D) in the figure. The rightmost
portion of each surface plot (lowest value of z/lw) corresponds
to the electrode with opposite charge to the dendrimer, while
the similarly charged electrode lies left (highest value of z/lw).
The back plane represents the neutral σlw

2 = 0 simulation, and
the highest value of σlw

2 falls in the foreground. Several notable
features are evident. First, several maxima exist as a function of
z/lw for all values of σlw

2 . Their number increases as the
concentration increases, as expected. For all values of surface
charge density, the space near the similarly charged electrode is

avoided by the dendrimer, creating a depletion layer. As the
surface charge increases, however, the oppositely charged
electrode accumulates significant dendrimer density at the
expense of the closest maxima found in the lower charge
density simulations. At the lower concentrations, the
dendrimers move slightly closer to the oppositely charged
plane, participating in a double layer with the counterions. The
counterion probability map mirrors that of the dendrimer but is
less well-defined in the bulk (see the Supporting Information
for details). Similar plots are found for most combinations of G,
σ, and concentration studied. That the most proximate density
peak moves closer to the substrate surface provides the key
observation for the discussion herein. This observation
indicates that the simulations cover surface charge densities
that result in perturbation of only the first layer of dendrimers
closest to the surface. Details of the double layer structure and
potential drop across the two electrodes will be reported in a
later study.
As charge builds on the electrode, one may imagine three

scenarios for how additional dendrimer charges add to the
interface. The dendrimers may deform, pressing more of their

Figure 2. Probability P of finding a model segment along the perpendicular axis between the two electrodes as a function of reduced surface charge
density σlw

2 . Plots for G = 3 and concentrations (A) 0.5c*, (B) c*, (C) 1.5c*, and (D) 2c* are shown. In part (E), snapshots of those dendrimers
touching the electrode are shown for G = 3 and c = 2c* at high and low surface charge densities. The arrows indicate the approximate location of
each snapshot on the probabilty plot given in part D. One dendrimer in each snapshot is highlighted in blue to demonstrate the flattening of
individual molecules within the adsorbed layer.

ACS Macro Letters Letter

dx.doi.org/10.1021/mz400524c | ACS Macro Lett. 2014, 3, 180−184182



segments to the surface; more dendrimers may add to the
interface; or some combination of addition and deformation
may take place. Part E of Figure 2 illustrates that flattening
certainly takes place. To determine which of these specific
possibilities is realized and to compare with the simple scaling
argument provided above, we calculate the average number of
discrete dendrimers Nd that have at least one segment in
contact with the oppositely charged electrode. Contact is
defined as falling within two bead diameters from the midplane
of the electrode. We find that a simple second-order Langmuir
isotherm (with minor modification) captures the dependence
of Nd on the binding enthalpy and concentration, similar to
experimental findings.11,18,28 Specifically, we find that Nd2πRg

2/
A ∝ (i1 exp(w)c + 2i2 exp(w)c

2)/(1 + i1 exp(w)c + i2 exp(w)c
2)

+ i0 ≡ IL(c,w). The term on the left reflects the drive toward a
terminal value of Nd ∝ A/Rg

2 where A is the area of the
attractive surface. The first term on the right is the familiar
Langmuir isotherm with coefficients i1 = 0.4 and i2 = −2 ×
10−5. Here, c is simply the number of dendrimers in the fixed-
volume simulation box. Note that we have here assumed that
the enthalpic gain on contact dominates the entropic loss. The
last term in the isotherm reflects the changing ionic strength of
the solutions with changing concentration; at lower concen-
trations of dendrimers, the molecules begin to add earlier than
predicted by the simple isotherm but otherwise conform to the
standard expression. Thus, i0 = 0.1 for the lowest concentration
studied and zero for the remaining three. For convenience, we
define the modified second-order expression to be IL(c,w).
Figure 3 presents the observed adsorption isotherms for all four
concentrations studied and for generations G = 2−4. As evident
in the G = 4 data, the finite size of the electrodes begins to lead
to poor sampling statistics for the larger two generations of
growth. Thus, though G = 5 follows the same form of isotherm,
those results are not shown because the scatter confuses the

picture presented by the lower three generations. The data
clearly demonstrate that, as one would expect, fewer
dendrimers of higher generation are needed to achieve charge
neutrality compared against their smaller counterparts.
The isotherms suggest continued addition to the surface with

increasing attraction. However, this tells only a portion of the
story. We also must consider the fraction of segments within a
dendrimer that are bound to the surface fs to determine which
of the proposed scenarios is active. As in the estimation of Nd,
segments found to lie within a distance of two bead diameters
from the attractive electrode midplane are counted as touching
the surface. Figure 4 presents these estimates for all

concentrations and generations of growth studied, in terms of
the scaling prediction above. Clearly, the scaling estimate works
well, but two different regimes are evident. At low values of
attraction (small w), the fraction of dendrimer segments on the
surface that are in contact with the electrode Nd fs rapidly rises.
This quantity then rolls over into a regime in which the number
of segments grows more slowly but is still in accord with the
predicted scaling. Some generational dependence can be
discerned, with lower generations tending to fall predominantly
in the regime with slower segment growth. Comparison of the
number of segments adsorbed to the surface charge suggests a
tendency to overcharge the surface over the range of σ values
studied. However, the exact values of Nd and fs are subject to
the chosen distance threshold, and future study of the double
layer is merited.
This addition of segments coincides with compression of the

dendrimers against the surface. Figure 5 contains two plots of
the component of the radius of gyration perpendicular to the
surface, Rz, averaged over all of the bound dendrimers. In the
main plot, estimates for all of the generations of growth G,
adsorption enthalpies w, and concentrations are presented in a
form that illustrates the transition from compressed to
noncompressed. The ratio of Rz to the total root-mean-squared

Figure 3. Average number of discrete dendrimers touching the
oppositely charged electrode Nd, presented as the Langmuir isotherm
described in the text. The colors encode concentration with black, red,
green, and blue corresponding to 0.5c*, c*, 1.5c*, and 2.0c*,
respectively.

Figure 4. Number of dendrimer segments Nd fs in contact with the
oppositely charged electrode normalized by the predicted scaling as a
function of the enthalpy gained on contact with the surface ws, plotted
in accord with the predicted scaling.
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radius of gyration Rg rises rapidly as the surface charge density
decreases and then asymptotes to the expected value of roughly
0.58 for noncompressed molecules. From this, we see that
compression occurs below a threshold value of LNd/w

2. The
insert plot presents the data in the form of the predicted scaling
law derived above. However, for clarity, only data for Rz/Rg <
0.49 (that is, only data in the compressed region of the main
plot) are shown. Here, we see that the proposed scaling works
well; the height of the layer formed by the adsorbed dendrimers
varies directly with the number of dendrimers adsorbed Nd and
the total contour length of the dendrimers L while changing in
proportion to the inverse of the squared enthalpy.
In summary, we present herein a simple scaling argument

that captures many of the salient features of the phenomena at
interfaces between charged surfaces and concentrated den-
drimer solutions. Those predictions appear to agree well with
extensive molecular dynamics simulations that span a range of
concentrations, electrode surface charges, and dendrimer
generation of growth. From these results, we conclude that
charge on the substrate is satisfied by a combination of addition
of dendrimers to the surface and concurrent compression of the
molecules against the substrate. We appeal to two key
assumptions. First, we use an effective model for the dendrimer
that captures its internal repulsions by rescaling the effective
step length between segments. This quantity may be estimated
from the radius of gyration of the free dendrimer. Second, we
assume weak adsorption in which only the first layer of
dendrimers near the surface is affected by the charge on the
electrodes. These results should yield to direct experimental
evaluation and may be of use in designing new chemistries for
advanced applications.
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